Milwaukee County Parks, Energy, and Environment Committee March 8, 2016

The Domes in Mitchell Park Conservatory

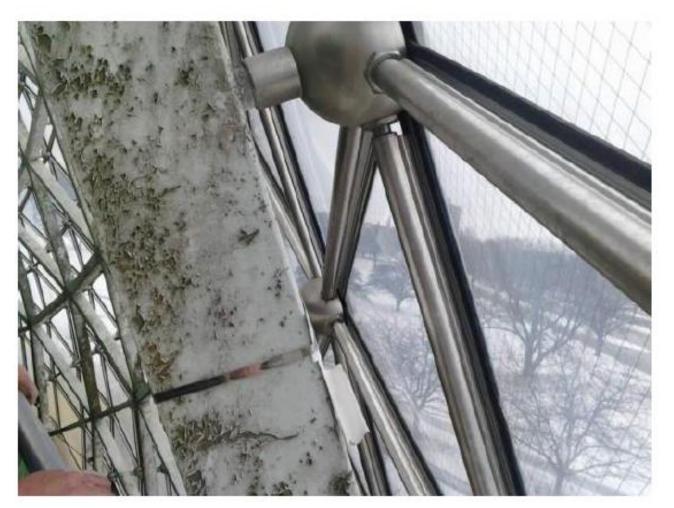
Facilities Management Division Milwaukee County Parks

Agenda

- 2015-2016 Timeline Review
- Short Term Solution for Show Dome
- Updated Cost Estimates
- Arid & Tropical Dome Next Steps
- Overarching Challenges with Domes
- Long Term Plan

Recent Timeline: Overview

Spalling Concerns Identified	Mitigation Efforts Complete	Mitigation Report Submitted		Pieces Found In Soil – Mitigation Effort Debris		Further Pieces Identified – Closure	
•	Ongoing Mitigation Efforts & Drafting of Report		Pa	nitoring by tks Staff & Engineers	Planni	ive Installation ng. Installation /Summer 2016.	
August 2013	September 2014	Janu 20	uary 15	M 20	•	January 2016	
		ſ					
			Reco	ommendati	on		
			to in	spect entire	e		
			struc	ture "every	/ 2-3		
			year	s."			



BROKEN GLASS

Photo F11: BROKEN GLASS LETS IN AIR AND MOISTURE.

Photo F12: WATER DIVERTER INSTALLED BELOW HUB.

Photo Taken Prior to Mitigation Efforts

CONCRETE DETERIORATION AT EMBEDS

Typical for ~40% of Connections

Photo F01: VISIBLE CONCRETE CRACKING AT CONNECTION OF GLAZING STANDOFF PIPE TO STRUCTURAL SPACE FRAME.

Photo Taken During Mitigation Efforts

Typical for ~40% of Connections

Photo F02: DELAMINATED CONCRETE WAS KNOCKED LOOSE. EXPOSED EDGES OF THE RUSTY STEEL PLATE WERE LATER PAINTED WITH GRAY ZINC-RICH SPRAY PAINT. REMOVING THE CONCRETE PICTURED IN THE PREVIOUS PHOTO ELIMINATES A POTENTIAL FALLING HAZARD.

Photo Taken Prior to Mitigation Efforts

MISALIGNMENT BETWEEN GLAZING STANDOFF PIPE AND CONCRETE EMBED PLATE

Occurrences

- 4 Tropical
- 1 Arid
- 0 Show

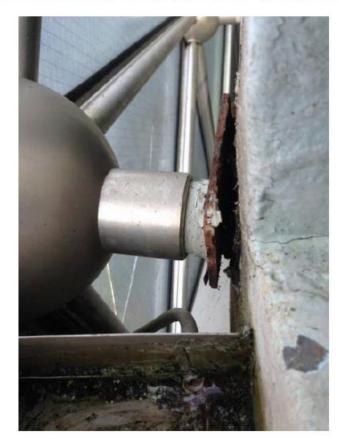


Photo F03: MISALIGNED CONNECTION LEAVES GAP WHERE WELD CANNNOT BE MADE ALONG THE BOTTOM EDGE OF PLATE.

Photo Taken <u>After</u> Mitigation Efforts

Occurrences

- 4 Tropical
- 1 Arid
- 0 Show

Photo F04: STAINLESS STEEL CLAMPS PULL MISALIGNED CONNECTIONS TIGHT TO SUPPORTING REINFORCED CONCRETE STRUCTURE.

Photo Taken <u>After</u> Mitigation Efforts

Photo F07: REMOVAL OF GROUT MAKES ROOM FOR NEW GROUT REPAIR. CONNECTION PLATE EXHIBITS SOME RUST.

Recent Timeline: May 2015

Spalling Concerns Identified	Mitigation Efforts Complete	Mitigation Report Submitted		Mitigation		Further Pieces Identified – Closure	
	Ongoing Mitigation Efforts & Drafting of Report		Monitoring Parks Staft Engineer	f&	Planning.	Installation Installation Inmer 2016.	
August 2013	September 2014	January 2015		Ma 201	· /	Janu 20	uary 16

May 2015

Concrete Pieces Identified in Soil

- Appeared to be from mitigation project, but that short / medium / long term plans must be initiated.
- **Three Plans Initiated:**
- 1. Extensive Monitoring & Logging
- 2. Netting Project Development
- 3. Public Long Range Planning Process for Repair or Replacement Options

Recent Timeline: 2015 Funding

Spalling Concerns Identified	Eff	orts	Mitigation Report Submitted	Pieces In So Mitig Effort I	oil – ation	Further Identi Clos	fied –
•	Ongoing Mitigation Efforts & Drafting of Report	ļ		Monitoring by Parks Staff & Engineers	Protective I Planning. In Spring/Sum	stallation	
August 2013	-	ember 14	January 2015 2	м 20 2015 Funding	15		uary 16
				Vetting P&D			
				ong Range I Development			

Recommendation to Close

<u>Situation</u>

- Engineering team on site for netting mock up meeting in January 2016
- Further spalled concrete identified in January.

Action Taken:

- Consultant Engineers, Risk Management, FMD, Parks, Exec's Office, and Budget met to discuss situation
- Concurrence that with unknown source of larger piece and signs of continued spalling, despite mitigation efforts in 2014, only logical answer to close effective immediately.

Spalling Protection Options

- 1. Covered Pathways
 - Doesn't protect staff and greatly lessens 'Domes experience'
- 2. Netting/Mesh on Inside of Structure
 - Initially challenged due to aesthetics
 - Better aesthetic solution identified recently
 - Benefits related to simplicity & all encompassing protection
- 3. Netting/Mesh at Connections
 - Initially viewed as top solution.
 - Incredibly expensive
 - Highly volatile pricing due to time required.
 - Simply assuming \$300 per connection = \$1.5M

5,100 Connections

- $\frac{1}{2}$ " or smaller opening size
- Flame Resistant
- Mold/Mildew Resistant
- Drains Water

Criteria for Objective Review

- Staff areas protected as well as pedestrian paths
- Cost
- Duration to install
- Availability
- Lifespan (5 yr min up to 10+)
- Visually appealing
- Impact on future inspection
- Impact on plants
- Impact on visitor experience
- Vegetation/habitat modification requirements

Objective Review

			Meta' Mesh Option	IS	Poly Netting Options*		Canopy Over	
Criteria	Importance Rating	Wrap Joints SS 1/2" Hex	Interior Face SS 1/2" Hex	Interior Face Galv 1/4" Square	Wrap Joints 1/4" White	Interior Face 1/4" White	Walkways	
Cost	5	1	2	2	1	3	3	
Duration of Installation per Dome	3	2	3	3	2	3	1	
Availability	1	2	2	3	1	1	2	
Lifespan (5 yr min - up to 10+)	4	3	3	1	2	2	3	
Visually appealing	2	3	3	2	3	1	1	
Impact on future inspection	5	2	2	2	1	2	1	
Impact on Plants	4	3	3	2	3	1	1	
Impact on Visitor Experience	5	3	3	3	3	3	1	
Protect Staff Area	5	3	3	3	3	3	1	
Vegetation/Habitat Modification	4	3	3	3	3	3	1	
Maximum Possible Points:	114	95	103	90	85	91	57	
Minimum Possible Points:	38							
Approx Cost for Show Dome		\$301,000	\$266,000	\$239,000	\$276,000	\$231,000	\$283,000	

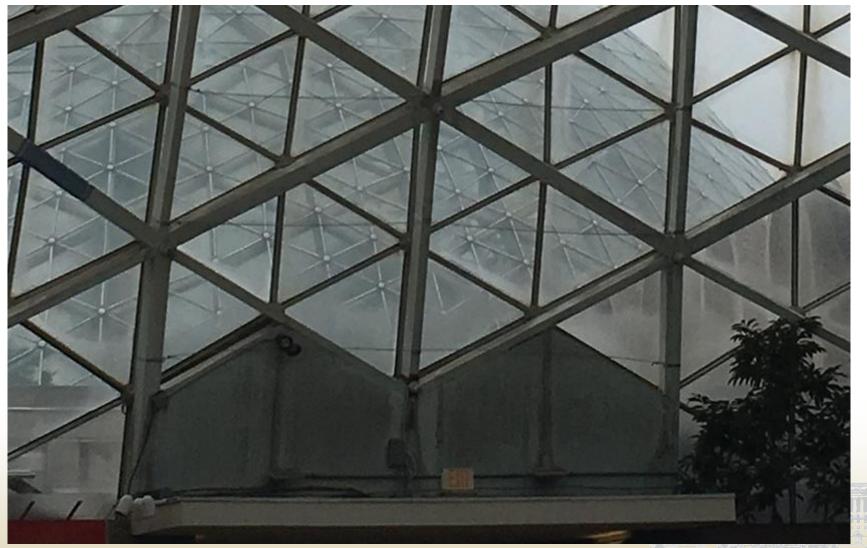
* Poly will not allow Show Dome to open in May due to lead time

Red indicates an unacceptable condition

Project Cost	½" SS Hex Mesh
Show Dome	\$266K
Tropical Dome*	\$TBD
Arid Dome*	\$TBD
Spalling Protection (Three Domes)	\$266K + Arid/Tropical Domes
Updated 2008 Estimates	\$30K
Pre-Award Long Range Plan Support	\$50K
Long Range Planning RFP	\$100K
Graef Engineering Support	\$100K
AE&ES Project Management	\$85K
Short & Long Term Soft Costs	\$365K

Current Total

\$631K + Arid/Tropical Domes


Recommend approving resolution and \$500K.

* Return in May with better cost analysis for Arid and Tropical Domes.

Picture of Interior Netting - Distance

Arid / Tropical Dome Plan

- Use lessons learned in Show Dome for efficiencies and cost control
- Arid and Tropical Domes have highly variable schedule based on:
 - Lift Availability
 - Material Availability
 - Personnel Availability & Concurrent Work Options
 - Acquisition Plan
- Specialized lift required to access concrete frame...

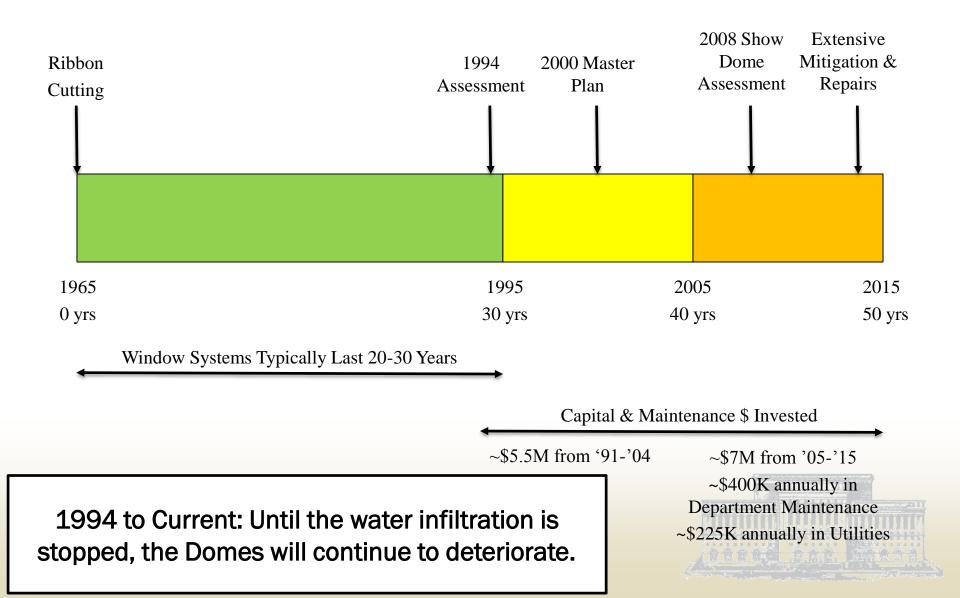
Specialized Lift (Tropical and Arid)

Specialized Lift (Tropical and Arid)

Specialized Lift (Tropical and Arid)

- Priority 1: Show Dome Opening
- Priority 2: Scope Development for Arid and Tropical
- Priority 3: Award work on Arid and Tropical Dome
- Timeline for Arid and Tropical Domes?
 - Too many variables to answer at this time.
 - 10-20 weeks per Dome
 - Material lead times vs. costs of more expensive materials
 - \$1/SF lead time possibly 3-4 months
 - \$4/SF lead time TBD
 - Concurrent work options based on lift availability

None of the short term solutions greatly extend the serviceable life of the Domes' structure.


Ongoing challenges will persist...

We have an opportunity we need to seize.

Domes Engineering Timeline

Challenges with Domes Design & Use

1. Inability to affordably access interior or exterior above 20'.

- Exterior typically requires crane for each maintenance action.
- In 2013, located specialized lift to access Arid & Tropical Dome interiors.
- Few economies of scale due to unique requirements for repair.

2. ~9,400 Windows

- Each cut to size when replaced.
- Due to racking/settling, every piece should be verified off site prior to install.
- 3. ~5,100 Hub Connections (aluminum to concrete frame)
 - Each a point of potential corrosion and spalling due to steel baseplate.
- 4. Internal Drainage System internal to aluminum framing
 - Clogged throughout structure and virtually inaccessible due to #1.
 - Tropical Dome constantly dripping inside due to backup in clogged drains.
- 5. Ensuring plant life maintained throughout repairs
 - Particularly challenging in Arid and Tropical Domes.
 - Must be trimmed back by staff to access interior walls.

Our Public Process Framework

- Phase 1: Community Engagement & Research
- Phase 2: Conservatory Plan Development
- Phase 3: Conservatory Plan Presentation and Approvals

Our plan is to preserve and protect the Conservatory's legacy through a robust community planning process with active public involvement and ongoing respect for the history and unique heritage of the Mitchell Park Horticultural Conservatory.

Phase 1: Community Engagement & Research (3 months)

- Form a Conservatory Steering Committee
- Review materials, plans, reports, studies
- Asses conservatory programs, funding and structure
- Engage stakeholders and the community at large
- Identify options and make recommendations
- Answer "What is the long range plan for the Conservatory Domes?"
- Prepare a Scope (RFP/RFQ) for Conservatory Master Plan process (Phase 2)

Planning for the Future

- Which options are on the table?
 - Repair the Domes?
 - Complete Restoration of the Domes?
 - Rebuild the Conservatory Domes?
 - Envision a new future of the Mitchell Park Conservatory?
- We are committed to engaging with the public in a long-term planning process that is transparent and comprehensive

Conservatory Steering Committee

- Horticultural Services Manager, Department of Parks, Recreation and Culture
- President, Friends of the Domes
- Representative, Clarke Square
 Neighborhood Initiative
- Representative, Potawatomi Bingo and Casino
- Representative, Journey House
- Representative, MPS, Department of Business, Community and Family Partnerships

- Representative, Visit Milwaukee
- Representative, Newaukee
- Representative, Zilber Foundation
- Representative, Brewers Foundation
- Representative, Horticultural Practitioner
- Representative, Historical Preservation Group
- Milwaukee County resident
- Consultant

Phase 2: Conservatory Plan Development (3-6 months)

- Public information and Public Workshop meetings
- Draft Conservatory Master Plan
- Detailed analysis and Projected costs
- Presentations of the draft plan
- Follow-up interviews and meetings

Phase 3: Conservatory Plan Presentation and Approvals (3 months)

- Final Conservatory Plan, including implementation plan
- Presentations to Steering Committee, County Executive and staff, and County Board of Supervisors

<u>Phase 4: (contingent item) development of design, bid, build</u> <u>contract documents</u>

Milwaukee County Parks, Energy, and Environment Committee March 8, 2016

The Domes in Mitchell Park Conservatory

http://county.milwaukee.gov/Domes