

Battery Electric Bus & Facilities Analysis

Results & Recommendations

Milwaukee County Board of Supervisors
Transportation, Public Works and Transit Committee
December 4, 2019

Dana Lowell dlowell @mjbradley.com

Project Purpose

Determine financial and operational changes required for MCTS to transition to electric buses:

- Evaluate the capability of commercially available battery buses in MCTS service
- Determine infrastructure requirements for battery bus charging
- Estimate the capital and operating costs associated with fleet transition
- Identify necessary changes to bus maintenance, bus scheduling, and other operating practices to accommodate electric buses
- Develop a Fleet Electrification Business Plan to guide the transition
- Make recommendations for near-term implementation of a pilot program, to include operation of electric buses on the planned BRT route

MJB&A Electric Transit Bus Clients

LA County Metropolitan Transportation Authority

Santa Monica Transit

TransLink/Coast Mountain Bus (Vancouver)

MTA New York City Transit

Milwaukee County Transit System

Washington Metropolitan Area Transit Authority

Commercial 40-ft Electric Buses

- All major North American transit bus manufacturers now offer 40-ft battery buses, including New Flyer, Gillig, and NovaBus
- Two electric-only manufacturers also sell buses in North America: Proterra and BYD
- Most manufacturers offer a maximum battery size of ~450 kWh
 - Proterra offers batteries up to 660 kWh
 - NovaBus recently announced the availability of 40-ft buses with a 594 kWh battery
- Battery buses cost \$750,000 \$900,000+ depending on battery size
- MCTS new diesel buses cost ~\$500,000
- This is a dynamic market battery offerings, other aspects of electric bus design, and cost will continue to evolve

Electric Bus Charging Scenarios

SCENARIO	DEPOT CHARGING	IN-ROUTE CHARGING
CONCEPT	All energy added "overnight", using 50 kW chargers located at each bus garage	All energy added "in-route", using 450 kW chargers located throughout service area
COST TRADE- OFFS	 Very large battery required on bus, high bus cost Practical limitation on battery size limits range – in the near term additional buses will be required Large number of chargers required – space claim at Depots 	 Smaller battery required on bus, lower bus cost Smaller number of chargers required, but higher cost/charger Siting in-route chargers could be difficult

Depot vs In-route Charging

	DEPOT CHARGING	IN-ROUTE CHARGING
PROS (+)	 More direct control over infrastructure Lower infrastructure costs Potentially less expensive in the long run Lower electricity cost (lower demand charges) 	 Less expensive now Do not need to shorten daily bus assignments No loss of depot parking capacity Greater resiliency/reliability –a few chargers out of commission won't affect bus operations
CONS (-)	 Space claim for chargers reduces parking capacity Must re-configure daily bus assignments to shorten them; increased dead-head time Difficult/costly to provide back-up power to entire depot 	 Charger site acquisition & permitting Less control over infrastructure Higher infrastructure costs Higher cost/difficulty of charger maintenance Additional time in schedules to accommodate charging Higher electricity cost (higher demand charges)

Range per Charge – MCTS

450 kWh nameplate capacity **Battery Degradation** 2.4%/vr x 7 years 374 kWh Reserve for battery life 5% 356 kWh Reserve for operational flexibility 10% 320 kWh Usable at bus mid-life 320 kWh On-board Battery 2.3 kWh/mi 3.0 kWh/mi = 138 miles = 108 miles 3-season 0° F Day "reliable range at bus mid-life" (planning factor)

- Batteries degrade over time, losing effective capacity
- Most battery manufacturers don't recommend bringing batteries all the way down to zero state of charge every day

 maintain a reserve of 5% -20%
- Daily energy use can vary from the average by 10% or more on a given day
- Electric bus planning should be based on a "reliable" range per charge that accounts for these factors – not on name plate range of a new battery and average energy use

Bus Scheduling – MCTS Miles per Day

- MCTS operates two types of routes with significantly different daily mileage
- On Fixed routes buses average 200 miles/day – but some go over 300 miles
- On Shuttle routes buses average 95 miles/day – but a few go over 150 miles

- If available range is less than daily mileage, long blocks will need to be shortened
- This will increase required peak buses

MCTS In-Route Charge Network (conceptual)

- 450 kW chargers
- All but 4 routes require charging at only one terminus
- All routes require only one charger to handle peak service
- 12 routes can share a location & charger with one other route

51 chargers at 44 different locations

1 charger for every 8 buses

MCTS In-Route Charge Time

- Most MCTS buses would need to charge for <10 minutes at the end of every round-trip
- Existing schedules include lay-over time at each route terminus, which can be used for charging

 Some routes may require additional lay-over time to accommodate charging – up to 30 minutes/day/bus

MCTS Charging Infrastructure Cost (Conceptual)

DEPOT CHARGING

	DEPOT CHARGING	
	FD	KK
Electrical	\$9,743,657	\$7,975,767
Civil/Struictural	\$581,370	\$419,301
Architectural	\$350,000	\$350,000
Remote Monitoring	\$250,000	\$250,000
sub-total	\$10,925,027	\$8,995,068
Contingency (20%)	\$2,185,005	\$1,799,014
sub-total	\$13,110,033	\$10,794,082
Design	\$439,000	\$359,000
Utility service ¹	<u>\$0</u>	<u>\$0</u>
TOTAL	\$13,549,033	\$11,153,082
Number of buses	148	132
Average per bus	\$91,548	\$84,493

		76
	-8	
, ,		
1_	2	5_/
MIB &	Α	

	In-route
	450 kW
Charger Installation	\$481,488
Site Work	\$100,000
Remote Monitoring	\$25,000
sub-total	\$606,488
Contingency (20%)	<u>\$121,298</u>
sub-total	\$727,785
Design	\$22,000
Utility service	\$100,000
TOTAL	\$849,785
Total Chargers	51
Total Buses	402
Average \$/bus	\$107,809

Electric Bus Economics

- Electric buses are more expensive to purchase than diesel, hybrid, or CNG buses
- Charging infrastructure is expensive but less so than incremental cost of buses
- Batteries will (likely) need to be replaced at mid-life
- Small increase in bus operator labor
- Charger maintenance costs
- Electricity is cheaper than diesel
- Potential for modest maintenance cost savings

CAPITAL

OPFRATING

CAPITAL / OPERATING COST TRADE-OFFS

"BREAK EVEN" (vs Diesel) IS PRIMARILY INFLUENCED BY RELATIVE COST OF DIESEL FUEL & ELECTRICITY

THERE ARE OTHER COST & OPERATIONAL TRADE-OFFS BASED ON CHARGING STRATEGY

MCTS Projected Electric Bus Life-Cycle Cost

Electrification - Full Fleet Transition Cost

All new buses after 2025 battery electric Full fleet electrification by 2040

	DEPOT CHARGING	IN ROUTE CHARGING
Incremental Capital ¹	\$228 million	\$159 million
Operating Savings ²	(\$28 million)	(\$40 million)
NET COST (2025 – 2040)	\$200 million \$13 mill/yr	\$118 million \$7 mill/yr
Additional Buses	58 buses	NA
Additional Depot Space	170 parking spaces	NA
In-route Chargers	NA	50 chargers Up to 44 locations

¹ Increased cost of battery buses compared to diesel buses, plus cost of chargers

² Fuel and maintenance cost savings, net of increased operator labor and charger maintenance

Electrification - Full Fleet Transition Emissions

Based on current electric grid mix

 Greater use of low-carbon electricity generating sources would reduce emissions further

Electrification - Full Fleet Transition Emissions

- MCTS diesel bus fleet is estimated to emit 52,500 metric tons (MT) of GHGs per year.
 - 12.8 tons of NOx and 0.38 tons of PM per year in the Milwaukee metro area
- Once the fleet is converted to all electric buses annual GHG emissions will fall to 29,100 MT, a reduction of 45 percent.
- Since electric buses have no tailpipe emissions, annual fleet NOx and PM emissions will fall to zero as the MCTS fleet is electrified.
 - MCTS fleet electrification could contribute to improvements in local air quality in Milwaukee, with associated reductions in negative health effects.

Recommendations – Full Fleet Electrification

- If pursuing full fleet electrification, MCTS should use in-route charging rather than depot charging
 - Significantly lower net cost of transition
 - Will not require a 3rd bus depot
 - After 2040 net annual cost savings compared to a diesel fleet
- Fleet electrification can proceed route-by route as funding is available
 - Most individual routes require only one in-route charger and 5 15 buses
 - Incremental capital costs (buses + charger) are \$3 \$6 million per route
- Potential interim strategy is replacing some retiring diesel buses with hybrid buses during the transition
 - No charging infrastructure required
 - Estimated 17% lower fuel use and GHG emissions than diesel buses
 - Estimated 6% higher life-cycle costs than diesel due to higher purchase cost

Fleet Electrification – Operational Changes

To accommodate electric buses MCTS will need to make significant changes to all of their operations:

- Add lay-over time to some schedules to accommodate in-route charging
- Consider changes to route structure to allow sharing of in-route charging locations between routes
- Evolve bus maintenance programs to accommodate high-voltage electric drive systems
- Develop tools and procedures to monitor bus charging and battery state of charge for all in-service electric buses
- Develop capabilities to maintain and repair chargers
- Acquire mobile electric generation capacity to maintain charging during interruptions to grid power

Recommendations – BRT & Pilot Program

- Purchase 15 identical buses, to be used on BRT route and in pilot service on other routes
 - 450 kWh battery
 - Overhead conductive charge port
 - Supplemental fuel heaters
- Install two 450 kW overhead pantograph chargers
 - One at Watertown Plank Park & Ride
 - One at depot housing buses
- 9 buses per day required on BRT route
 - ▶ These buses will charge at Watertown Plank, for ~8 minutes on each trip
- Up to 6 buses per day available to operate on select blocks on other routes
 - ▶ These buses will charge at the depot overnight, ~ 1hr/bus/day charge time
 - Depot charger will serve as back-up to Watertown Plank charger

BRT & Pilot Program Cost

	Number	Unit Cost	TOTAL
Electric Buses	15	\$900,000	\$13,500,000
Chargers	2	\$850,000	\$1,700,000
	TOTAL		\$15,200,000

- Incremental cost of \$7.5 million compared to purchasing 15 new diesel buses
- BRT and pilot fleet projected to accumulate 675,000 electric miles annually
- Net fuel cost savings of ~\$150,000/year compared to diesel buses
- Will need to ensure that BRT schedules have sufficient lay-over time to accommodate in-route charging
- Electric buses on routes other than BRT route limited to ~130 miles/10 hours per day before re-charge
- To minimize electricity costs depot charging should not start until after 9 PM

Concord, MA

Headquarters

47 Junction Square Drive Concord, MA 02145 USA

T: +1 978 369 5533 F: +1 978 369 7712

Washington, DC

1225 Eye Street, NW, Suite 200 Washington, DC 20005 USA

T: +1 202 525 5770

For more information, visit www.mjbradley.com

Dana Lowell
Senior Vice President/Technical Director
+1 978 405 1275
dlowell@mjbradley.com